Zangwill’s Global Convergence Theorem

A theory of global convergence has been given by Zangwill\(^1\). This theory involves the notion of a set-valued mapping, or point-to-set mapping.

Definition 1.1 Given two sets, \(X\) and \(Y\), a set-valued mapping defined on \(X\) with range in \(Y\) is a map, \(\Phi\), which assigns to each \(x \in X\) a subset \(\Phi(x) \subset Y\).

Remark: In the following we will abuse notation and write \(\Phi : X \rightarrow Y\) when it is clear that \(\Phi\) is a set-valued mapping. More properly, we should write \(\Phi : X \rightarrow 2^Y\).

This notion is a generalization, of course, of the idea of a function \(\varphi : X \rightarrow Y\) which assigns to each \(x \in X\) a point \(\varphi(x) \in Y\). In fact, we can think of such a map, trivially, as a set valued map that takes \(x \rightarrow \{\varphi(x)\}\), a set with just one element.

We begin with a general definition of an iterative algorithm.

Definition 1.2 Let \(X\) be a set and \(x_o \in X\) a given point. Then an iterative algorithm, \(A\), with initial point \(x_o\) is a set-valued mapping \(A : X \rightarrow X\) which generates a sequence \(\{x_n\}_{n=1}^{\infty}\) according to

\[
x_{n+1} \in A(x_n), \quad n = 0, 1, \ldots.
\]

With this general definition of an algorithm, it is clear that the sequence generated by the algorithm cannot be predicted just by knowing the initial point \(x_o\). This apparent ambiguity allows us to analyze classes of algorithms rather than just one at a time. However, this ambiguity should not be interpreted to mean that, for a specific method, there is any ambiguity in the sequence produced by the algorithm; a particular implementation of, say, “steepest descent” produces a well-defined sequence given a particular starting point.

Amongst all the iterative algorithms, we are interested, in particular, in various descent algorithms. In order to define what we mean, we introduce the notion of a solution set \(\Gamma \subset X\). For example, we may choose \(\Gamma\) to be the set of all minimizers of a convex objective function, or, thinking of the necessary conditions, we might alternatively define the solution set as the set of all solutions of the equation \(\nabla f(x) = 0\), which is just the set of critical points. Much depends on the nature of the particular algorithm that we consider.

Whichever set is chosen as the solution set, we introduce the corresponding notion of a descent function.

\(^2\)The notation \(2^Y\) is commonly used to denote the set of all subsets of the set \(Y\).
Definition 1.3 Given $\Gamma \subset X$ and an iterative algorithm A on X, a continuous real-valued function $Z : X \to \mathbb{R}$ is called a descent function provided

1. If $x \notin \Gamma$ and $y \in A(x)$, $Z(y) < Z(x)$.
2. If $x \in \Gamma$ and $y \in A(x)$, $Z(y) \leq Z(x)$.

For the general non-linear programming problem

$$\min f(x), \text{ subject to } x \in \Omega,$$

if we let Γ be the set of minimizing points (assuming that they exist) and if A is an algorithm defined on Ω for which, at each step, $f(x_{k+1}) < f(x_k)$, then we can use f itself as the descent function. This is often the case in practice. On the other hand, for unconstrained problems $\Omega = \mathbb{R}^n$, we often define $\Gamma = \{x \in \mathbb{R}^n | \nabla f(x) = 0\}$. Then, we may design the algorithm A such that $|\nabla f(x)|$ is the descent function.

By an iterative descent algorithm we simply mean an iterative algorithm with an associated solution set and descent function, i.e., a triple $\{A, \Gamma, Z\}$. What we are interested in is clearly those algorithms whose iterates eventually end up in the solution set Γ.

For iterative descent algorithms there is a general notion of global convergence which describes the property that the algorithm converges to the solution set.

Definition 1.4 Let $\{A, \Gamma, Z\}$ be an iterative descent algorithm on a set X. This algorithm is said to be globally convergent provided, for any starting point $x_o \in X$, the sequence generated by A has x_o as an accumulation point.

Our first task is to find a property of a set-valued function that will guarantee some kind of continuity. We are all familiar with the notion of a continuous function. If X and Y are metric spaces, e.g. Euclidean spaces, say, \mathbb{R}^n and \mathbb{R}^m, then we have a simple definition of continuity of a function in terms of sequences which we recall here.

Definition 1.5 Given two metric spaces X and Y, a function $f : X \to Y$ is said to be continuous on X provided, given $x_o \in X$ and a sequence $\{x_n\}_{n=1}^{\infty}$ such that $x_n \to x_o$ as $n \to \infty$, then the sequence $\{y_n\}_{n=0}^{\infty} = \{f(x_n)\}_{n=1}^{\infty}$ converges to $y_o = f(x_o)$.

We can think of this in a slightly different way. We consider the graph of f, denoted $Gr(f) := \{(x, y) \in X \times Y | y = f(x)\}$. Consider a sequence $\{x_n\}$ such that $x_n \to x_o$ and the corresponding sequence $y_n = f(x_n), n = 1, 2, \ldots$. Then, for all $n, (x_n, y_n) \in Gr(f)$. Continuity of f means that if $y_n \to y_o$ then $y_o = f(x_o)$. In other words $(x_o, y_o) \in Gr(f)$. Indeed, we can see that we have the simple proposition,
Proposition 1.6 Given two metric spaces X and Y, a function $f : X \to Y$ is continuous on X provided $Gr(f) \subset X \times Y$ is closed in $X \times Y$.

For this reason, we think of continuity of a set-valued mapping in terms of its graph.

Definition 1.7 Given two metric spaces X and Y and a set valued function Φ from X to Y, we define the graph of Φ,

$$Gr(\Phi) := \{(x, y) \in X \times Y | y \in \Phi(x)\}.$$

Then the generalization of continuity to this case is most naturally defined in terms of this graph.

Definition 1.8 A set-valued mapping $\Phi : X \to Y$ is said to closed at $x_o \in X$ provided

(i) $x_k \to x_o$ as $k \to \infty$, $x_k \in X$,

(ii) $y_k \to y_o$ as $k \to \infty$, $y_k, y_o \in Y$,

implies $y_o \in \Phi(x_o)$. The map Φ is called closed on $S \subset X$ provided it is closed at each $x \in S$.

Clearly a set-valued map, Φ, that is closed on a set X is exactly one whose graph $\{(x, y) \in S \times Y | y \in \Phi(x)\}$ is closed. We remark that closed set-valued mappings are sometimes call **upper-semicontinuous** set-valued mappings.

Let us look at two examples.

Example 1.9 As we have seen above, a continuous single valued function is one whose graph is closed. Let us look at a simple example of a discontinuous function, namely the Heaviside function, considered as as set-valued function, and defined by

$$H(x) = \begin{cases}
\{0\}, & x \leq 0 \\
\{1\}, & x > 0
\end{cases}$$

This set-valued function does not have a closed graph at $x_o = 0$ since, if $\{x_n\}$ is any sequence of points converging to 0 such that $x_n > 0$ and if, for each n, $y_n = 1 \in H(x_n) = \{1\}$ then $y_n \to 1 = y_o$ as $n \to \infty$, but $y_o = 1 \notin H(0) = \{0\}$. Hence this set-valued function is not closed at $x_o = 0$.

Example 1.10 Let $\Phi : \mathbb{R} \to \mathbb{R}$ be given by

$$\Phi(x) := \left[-\frac{|x|}{2}, \frac{|x|}{2}\right].$$

Now suppose that for some $x_o \in \mathbb{R}$, $x_n \to x_o$ and $y_n \to y_o$ as $n \to \infty$ are sequences such that $y_n \in \Phi(x_n)$. This means that we have

$$-\frac{|x_n|}{2} \leq y_n \leq \frac{|x_n|}{2},$$

and, taking $n \to \infty$, we clearly have

$$-\frac{|x_o|}{2} \leq y_o \leq \frac{|x_o|}{2}.$$

Hence Φ is closed.

As stated above, we are interested in algorithms whose iterates eventually end up in the solution set Γ. For this to occur, we will find it necessary that the algorithm be closed. Let us consider the following example.

Example 1.11 Let us consider the algorithm

$$\mathcal{A}(x) = \begin{cases} \{\frac{1}{2} (x - 1)1\}, & x > 1 \\ \{\frac{1}{2} x\}, & 0 \leq x \leq 1 \end{cases}.$$

and let $\Gamma = \{0\}$. Here, we may take $Z(x) = x$ as the descent function. To see this, suppose $x \neq 0$ which means just that $x \not\in \Gamma$. Then we have two cases:

1. If $x > 1$ then $(1/2)(x-1)+1 = (x+1)/2$ which, since $x > 1$ implies that $(x+1)/2 < x$.
2. If $0 < x \leq 1$ then $(1/2)x < x$.

If we start the algorithm with $x_o > 1$ then the sequence x_n generated by the algorithm converges to $x = 1$ which is not in the solution set Γ. This algorithm is not closed at $x = 1$.

Example 1.12 One common algorithm that is imbedded as a sub-algorithm in many descent algorithms is a *line search* algorithm in which we minimize the function $\varphi(\alpha) = f(x_k - \alpha \nabla f(x_k))$ along the line $x_k - \alpha \nabla f(x_k)$, $0 \leq \alpha < \infty$, which we denote by S. Note that, since f may have several minima along the line, the algorithm defined by S is indeed set-valued.

To be more precise, we define the set-valued function $S : \mathbb{R}^n \to \mathbb{R}^n$ by
\[S(x, d) = \{ y \in \mathbb{R}^n \mid y = x + \alpha d, \alpha \geq 0, \text{ and } f(y) = \min_{0 \leq \alpha < \infty} f(x + \alpha d) \}. \]

It is important later that \(S \), so defined, be closed provided \(d \neq 0 \). We also assume that the set-valued function has non-empty values, i.e., that the function \(f \) does indeed have a minimum along lines. Mild conditions, e.g., that \(f \) is both continuous and coercive suffice.

Proposition 1.13 Let \(f \) be continuous on \(\mathbb{R}^n \). Then the algorithm \(S \) is closed at any point \((x, d) \in \mathbb{R}^{2n} \) at which \(d \neq 0 \).

Proof: Suppose the \(\{x_k\}_{k=1}^{\infty} \) and \(\{d_k\}_{k=1}^{\infty} \) are sequences and that \(x_k \to x_o \) and \(d_k \to d_o \) as \(k \to \infty \) where \(d_o \neq 0 \). Suppose \(\{y_k\}_{k=1}^{\infty} \) is a sequence such that \(y_k \in S(x_k, d_k) \) for all \(k \) and that \(y_k \to y_o \) as \(k \to \infty \). We wish to show that \(y_o \in S(x_o, d_o) \).

Now for each integer \(k \), \(y_k = x_k + \alpha_k d_k \) for some number \(\alpha_k > 0 \). Hence

\[
\alpha_k = \frac{\|y_k - x_k\|}{\|d_k\|} \xrightarrow{k \to \infty} \overline{\alpha} := \frac{\|y_o - x_o\|}{\|d_o\|}
\]

which implies that \(y_o = x_o + \overline{\alpha} d_o \).

It remains to prove that this \(y_o \) minimizes \(f \) along the line \(x_o + \alpha d_o \). Observe that, for each \(k \) and each \(\alpha, 0 \leq \alpha < \infty \), we have, by definition of \(S(x_k, d_k) \):

\[
f(y_k) \leq f(x_k + \alpha d_k).
\]

By continuity of \(f \), taking \(k \to \infty \) leads to \(f(y_o) \leq f(x_o + \alpha d_o) \) for all \(\alpha \) which implies that

\[
f(y_o) \leq \min_{0 \leq \alpha < \infty} f(x_o + \alpha d_o),
\]

which implies, by definition, that \(y_o \in S(x_o, d_o) \). \(\square \)

Remark: If, at some stage, \(d_k = 0 \) then it is clear that no search will be made. Intuitively, this means that we should be in the solution set. It is important to understand that, in general, it is not possible that \(S \) will be closed at a point of the form \((x_o, 0) \) as the following example illustrates.

Example 1.14 Consider the scalar-valued function \(f(x) = (x - 1)^2 \). For any \(d \neq 0 \) we have

\[
\min_{0 \leq \alpha < \infty} f(\alpha d) = \min_{0 \leq \alpha < \infty} (\alpha d - 1)^2 = f(1) = 0.
\]
Hence \(S(0, d) = \{1\} \). On the other hand, for \(d = 0 \)

\[
\min_{0 \leq \alpha < \infty} f(\alpha d) = \min_{0 \leq \alpha < \infty} f(\alpha 0) = f(0) = 1.
\]

So \(S(0, 0) = \{0\} \). We see then that if \(y_k \in S(0, d_k), d_k \neq 0 \) that \(y_k = 1 \) for all \(k \) and certainly \(y_k \to 1 \) as \(k \to \infty \). But \(1 \not\in S(0, 0) \) so \(S \) is not closed whenever \(d = 0 \).

It is often possible to decompose and algorithm \(\mathcal{A} \) into two well-defined algorithms \(\mathcal{B} \) and \(\mathcal{C} \) in the sense that the results of one become the input of the next. We speak of the composition of algorithms and write, for example \(\mathcal{A} = \mathcal{B} \circ \mathcal{C} \). For example, if we consider the algorithm of steepest descent, the sequence is generated first by the map \(\mathcal{G} : \mathbb{R}^n \to \mathbb{R}^2 \) given by \(\mathcal{G}(x) = (x, \nabla f(x)) \) which gives the initial point and direction for the next step of the overall algorithm and is followed by a line search.

Now we will define what we mean by the composition of two set-valued functions.

Definition 1.15 Let \(\mathcal{A} : X \to Y \) and \(\mathcal{B} : Y \to Z \) be two point to set mappings. The composite map \(\mathcal{C} = \mathcal{B} \circ \mathcal{A} \) which takes points \(x \in X \) to sets \(\mathcal{C}(x) \subset Z \) is defined by

\[
\mathcal{C}(x) := \bigcup_{y \in \mathcal{A}(x)} \mathcal{B}(y).
\]

Of course, it is of interest to know when a composite map of this type is closed.

Proposition 1.16 Let \(\mathcal{A} : X \to Y \) and \(\mathcal{B} : Y \to Z \) be two set-valued mappings. Suppose

(i) \(\mathcal{A} \) is closed at \(x_o \),

(ii) \(\mathcal{B} \) is closed on \(\mathcal{A}(x_o) \),

(iii) If \(x_k \to x_o \) and \(y_k \in \mathcal{A}(x_k) \) then there exists a \(y \) such that, for some subsequence \(\{y_{k_j}\}, y_{k_j} \to y \) as \(j \to \infty \).

Then the composite map \(\mathcal{C} = \mathcal{B} \circ \mathcal{A} \) is closed at \(x_o \).

Proof: Let \(x_k \to x_o \) and \(z_k \to z_o \) with \(z_k \in \mathcal{C}(x_k) \). We want to show that \(z_o \in \mathcal{C}(x_o) \).

For each \(k \) select a \(y_k \) such that \(y_k \in \mathcal{A}(x_k) \) and \(z_k \in \mathcal{B}(y_k) \). By hypothesis, there is a \(y \) such that, for some subsequence \(\{y_{k_j}\}, y_{k_j} \to y \) as \(j \to \infty \). Since \(\mathcal{A} \) is closed at \(x_o \), it follows that \(y \in \mathcal{A}(x_o) \).

Since \(y_{k_j} \to y \) and \(z_{k_j} \to z_o \) as \(j \to \infty \), and since \(\mathcal{B} \) is closed on \(\mathcal{A}(x_o) \) \(\mathcal{B} \) is closed at \(y \). Hence

\[
z \in \mathcal{B}(y) \subset \mathcal{B} \circ \mathcal{A}(x_o) = \mathcal{C}(x_o).
\]

There are two useful corollaries.
Corollary 1.17 If \(A \) is closed at \(x_0 \) and \(B \) is closed on \(A(x_0) \), then, if \(Y \) is compact, the composite map is closed.

Corollary 1.18 If \(f \) is a scalar-valued function and \(B \) is a set-valued mapping, then if \(f \) is continuous at \(x \) and \(B \) is closed at \(f(x_0) \) then \(C = B \circ f \) is closed at \(x_0 \).

We may now state and prove the main result of Zangwill.

Theorem 1.19 Let \(A \) be an algorithm on \(X \), and suppose that, given \(x_0 \in X \), the sequence \(\{x_k\}_{k=1}^{\infty} \) is generated and satisfies

\[x_{k+1} \in A(x_k). \]

Let a solution set \(\Gamma \subset X \) be given, and suppose that

(i) the sequence \(\{x_k\}_{k=0}^{\infty} \subset S \) for \(S \subset X \) a compact set.

(ii) there is a continuous function \(Z \) on \(X \) such that

(a) if \(x \not\in \Gamma \), then \(Z(y) < Z(x) \) for all \(y \in A(x) \).

(b) if \(x \in \Gamma \), then \(Z(y) \leq Z(x) \) for all \(y \in A(x) \).

(iii) the mapping \(A \) is closed at all points of \(X \setminus \Gamma \).

Then the limit of any convergent subsequence of \(\{x_k\}_{k=0}^{\infty} \) is a solution.

Proof: Suppose that \(x^* \) is a limit point of the sequence \(\{x_k\}_{k=0}^{\infty} \). Then there is a subsequence \(\{x_{k_j}\}_{j=0}^{\infty} \) such that \(x_{k_j} \to x^* \) as \(j \to \infty \). Since the descent function \(Z \) is continuous, we have \(Z(x_{k_j}) \to Z(x^*) \) as \(j \to \infty \).

We show, first, that in fact \(Z(x_k) \to Z(x^*) \) as \(k \to \infty \). To this end, observe first that \(Z \) is monotonically decreasing on the sequence \(\{x_k\}_{k=0}^{\infty} \) as follows from the property that \(x_{k+1} \in A(x_k) \) and from (a) and (b) of (ii). Hence we must have \(Z(x_k) - Z(x^*) \geq 0 \) for all \(k \).

Now, since \(Z(x_k) \to Z(x^*) \) as \(j \to \infty \), given \(\epsilon > 0 \) there is a \(j_o \) such that, for \(j \geq j_o \), we have

\[Z(x_{k_j}) - Z(x^*) < \epsilon, \text{ for all } j \geq j_o. \]

Hence, for all \(k \geq j_o \)
\[Z(x_k) - Z(x^*) = Z(x_k) - Z(x_{k_{j_0}}) + Z(x_{k_{j_0}}) - Z(x^*) < \epsilon, \]

which shows that \(Z(x_k) \to Z(x^*) \) as \(k \to \infty \).

Now we want to show that the limit point \(x^* \) is a solution. We prove this by contradiction. Suppose that \(x^* \) is not a solution. We consider the sequence \(\{x_{k_j+1}\}_{j=1}^\infty \) which has the property that, for each \(j \), \(x_{k_j+1} \in A(x_{k_j}) \). This new sequence lies in the compact set \(S \) and hence contains a convergent subsequence \(x_{(k_j+1)_\ell} \to \overline{x} \) as \(\ell \to \infty \). Since \(A \) is closed on \(X \setminus \Gamma \) and, by assumption \(x^* \not\in \Gamma \), we see that

\[\overline{x} \in A(x^*). \]

On the other hand, the fact that, along the original sequence, \(Z(x_k) \to Z(x^*) \) implies that we must have \(Z(\overline{x}) = Z(x^*) \) and this contradicts property (ii) (a) of the theorem. \(\square \)