logo7.mw Explanation will be done in class.
| > |
DP:= densityplot(1, x=0..2, y=0..4): DP: |
Defining the quadratic and cubic Bezier curves, p and q respectively.
| > |
p[0]:=t^2: p[1]:=2*t*(1-t): p[2]:= (1-t)^2: |
| > |
q[0]:=t^3: q[1]:=3*t^2*(1-t): q[2]:=3*t*(1-t)^2: q[3]:= (1-t)^3: |
Points defined by trial and error plus a bit of planning.
| > |
a[0]:= [0,4]: a[1]:=[1.0, 4.1]: a[2]:=[2,4]: |
| > |
b[0]:= [0.1,0]: b[1]:= [0.2,0.4]: b[2]:= [0.4, 0.9]: |
| > |
c[0]:= b[2]: c[1]:= c[0]+ 1.2*(b[2]-b[1]); #see explanation done in class |
![[.64, 1.50]](images/logo7_1.gif) |
(1) |
| > |
c[2]:= [1.6,3.5]: c[3]:= a[2]: |
Defining the curves controlled by the corresponding 'polygons'
| > |
bz[1]:= sum(p[k]*a[k],k=0..2): |
| > |
bz[2]:= sum(p[k]*b[k],k=0..2): |
| > |
bz[3]:= sum(q[k]*c[k],k=0..3): |
bz[ ] [1], bz[ ][2] represent the x and y components of the Bezier curve.
| > |
B1:= plot([bz[1][1],bz[1][2], t=0..1], scaling=constrained): |
| > |
B2:= plot([bz[2][1],bz[2][2],t=0..1], scaling=constrained): |
| > |
B3:= plot([bz[3][1], bz[3][2], t=0..1], scaling=constrained): |
Defining the sets of controlled points to be plotted with the graph.
| > |
ptc:= plot({seq(c[j],j=0..3)}, style=point, symbol=box, color=blue): |
| > |
ptb:= plot({seq(b[k],k=0..2)},style=point, symbol=circle, color = green): |
| > |
display({B1,B2,B3, ptb, ptc}, axes=boxed); |
Adjusting the 'foot' of 7.
| > |
bb[0]:=b[0]: bb[1]:=[0.12,0.3]: |
| > |
bb[2]:=b[1]: bb[3]:=b[2]: |
| > |
bbz[2]:= sum(bb[k]*q[k],k=0..3): |
| > |
BB2:= plot([bbz[2][1], bbz[2][2], t=0..1], scaling=constrained): |