Bessel Functions

Two linearly independent solutions to the Bessel equation of order \(\nu \)

\[
\frac{z^2 d^2 y}{dz^2} + z \frac{dy}{dz} + (z^2 - \nu^2)y = 0
\]

are given by \(J_\nu(z) \), \(Y_\nu(z) \).

\(J_\nu(z) \) vs. \(z \) for \(n = 0, 1, 2, 3 \) (in increasing order of thickness).

Here is a plot of \(J_\nu(z) \) for various integral \(\nu \). Note that only \(J_0 \) is nonzero at \(z = 0 \). Note also that the zeroes *interlace*; that is,

\[
{\dot{j}_{i-1,k}} < {\dot{j}_{i,k}} < {\dot{j}_{i+1,k}} \text{ for all } i, k.
\]
$Y_\nu(z)$ vs. z for $n = 0, 1, 2, 3$ (in increasing order of thickness).

Here is a plot of $Y_\nu(z)$ for various integral ν. Note that all diverge as $z \to 0$. Note also that the zeroes interlace.